skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marolf, Donald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Near-extremal black holes are subject to large quantum effects, which modify their low-temperature thermodynamic behavior. Hitherto, these quantum effects were analyzed by separating the geometry into the near-horizon region and its exterior. It is desirable to understand and reproduce such corrections from the full higher-dimensional asymptotically flat or AdS geometry’s perspective. We address this question in this article and fill this gap. Specifically, we find off-shell eigenmodes of the quadratic fluctuation operator of the Euclidean gravitational dynamics, with eigenvalues that vanish linearly with temperature. We illustrate this for BTZ and neutral black holes with hyperbolic horizons in AdS in Einstein-Hilbert theory, and for the charged black holes in Einstein-Maxwell theory. The linear scaling with Matsubara frequency, which is a distinctive feature of the modes, together with the fact that their wavefunctions localize close to the horizon as we approach extremality, identifies them as responsible for the aforementioned quantum effects. We provide a contour prescription to deal with the sign indefiniteness of the Euclidean Einstein-Maxwell action, which we derive to aid our analysis. We also resolve a technical puzzle regarding modes associated with rotational isometries in stationary black hole spacetimes. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. A<sc>bstract</sc> Gravitational Rényi computations have traditionally been described in the language of Euclidean path integrals. In the semiclassical limit, such calculations are governed by Euclidean (or, more generally, complex) saddle-point geometries. We emphasize here that, at least in simple contexts, the Euclidean approach suggests an alternative formulation in terms of the bulk quantum wavefunction. Since this alternate formulation can be directly applied to the real-time quantum theory, it is insensitive to subtleties involved in defining the Euclidean path integral. In particular, it can be consistent with many different choices of integration contour. Despite the fact that self-adjoint operators in the associated real-time quantum theory have real eigenvalues, we note that the bulk wavefunction encodes the Euclidean (or complex) Rényi geometries that would arise in any Euclidean path integral. As a result, for any given quantum state, the appropriate real-time path integral yields both Rényi entropies and associated complex saddle-point geometries that agree with Euclidean methods. After brief explanations of these general points, we use JT gravity to illustrate the associated real-time computations in detail. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ B , where$$ \mathcal{B} $$ B may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ B includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ B was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ A L B ,$$ {\mathcal{A}}_R^B $$ A R B that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ B , and in particular for$$ \mathcal{B} $$ B =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ A L B L ,$$ {\mathcal{A}}_R^{B_L} $$ A R B L defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR
    more » « less
  4. A<sc>bstract</sc> Spacetime wormholes can provide non-perturbative contributions to the gravitational path integral that make the actual number of stateseSin a gravitational system much smaller than the number of states$$ {e}^{S_{\textrm{p}}} $$ e S p predicted by perturbative semiclassical effective field theory. The effects on the physics of the system are naturally profound in contexts in which the perturbative description actively involvesN=O(eS) of the possible$$ {e}^{S_{\textrm{p}}} $$ e S p perturbative states; e.g., in late stages of black hole evaporation. Such contexts are typically associated with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple topological gravity model to evolve in time, we find that such effects can also have large impact forN≪eS(in which case no quantum extremal surfaces can arise). In particular, even for smallN, the insertion of generic operators into the path integral can cause the non-perturbative time evolution to differ dramatically from perturbative expectations. On the other hand, this discrepancy is small for the special case where the inserted operators are non-trivial only in a subspace of dimensionD≪eS. We thus study this latter case in detail. We also discuss potential implications for more realistic gravitational systems. 
    more » « less
  5. A<sc>bstract</sc> Due to the conformal factor problem, the definition of the Euclidean gravitational path integral requires a non-trivial choice of contour. The present work examines a generalization of a recently proposed rule-of-thumb [1] for selecting this contour at quadratic order about a saddle. The original proposal depended on the choice of an indefinite-signature metric on the space of perturbations, which was taken to be a DeWitt metric with parameterα= – 1. This choice was made to match previous results, but was otherwise admittedlyad hoc. To begin to investigate the physics associated with the choice of such a metric, we now explore contours defined using analogous prescriptions forα≠ – 1. We study such contours for Euclidean gravity linearized about AdS-Schwarzschild black holes in reflecting cavities with thermal (canonical ensemble) boundary conditions, and we compare path-integral stability of the associated saddles with thermodynamic stability of the classical spacetimes. While the contour generally depends on the choice of DeWitt parameterα, the precise agreement between these two notions of stability found atα= – 1 continues to hold over the finite interval (– 2, – 2/d), wheredis the dimension of the bulk spacetime. This agreement manifestly fails forα> – 2/dwhen the DeWitt metric becomes positive definite. However, we also find dramatic failures forα< – 2 that correlate with breakdowns of the de Donder-like gauge condition defined byα, and at which the relevant fluctuation operator fails to be diagonalizable. This provides criteria that may be useful in predicting metrics on the space of perturbations that give physically-useful contours in more general settings. Along the way, we also identify an interesting error in [1], though we show this error to be harmless. 
    more » « less
  6. A<sc>bstract</sc> The AdS/CFT correspondence states that certain conformal field theories are equivalent to string theories in a higher-dimensional anti-de Sitter space. One aspect of the correspondence is an equivalence of density matrices or, if one ignores normalizations, of positive operators. On the CFT side of the correspondence, any two positive operatorsA, Bwill satisfy the trace inequality Tr(AB) ≤ Tr(A)Tr(B). This relation holds on any Hilbert space$$ \mathcal{H} $$ H and is deeply associated with the fact that the algebraB($$ \mathcal{H} $$ H ) of bounded operators on$$ \mathcal{H} $$ H is a type I von Neumann factor. Holographic bulk theories must thus satisfy a corresponding condition, which we investigate below. In particular, we argue that the Euclidean gravitational path integral respects this inequality at all orders in the semi-classical expansion and with arbitrary higher-derivative corrections. The argument relies on a conjectured property of the classical gravitational action, which in particular implies a positive action conjecture for quantum gravity wavefunctions. We prove this conjecture for Jackiw-Teitelboim gravity and we also motivate it for more general theories. 
    more » « less
  7. A bstract Thermal partition functions for gravitational systems have traditionally been studied using Euclidean path integrals. But in Euclidean signature the gravitational action suffers from the conformal factor problem, which renders the action unbounded below. This makes it difficult to take the Euclidean formulation as fundamental. However, despite their familiar association with periodic imaginary time, thermal gravitational partition functions can also be described by real-time path integrals over contours defined by real Lorentzian metrics. The one caveat is that we should allow certain codimension-2 singularities analogous to the familiar Euclidean conical singularities. With this understanding, we show that the usual Euclidean-signature black holes (or their complex rotating analogues) define saddle points for the real-time path integrals that compute our partition functions. Furthermore, when the black holes have positive specific heat, we provide evidence that a codimension-2 subcontour of our real Lorentz-signature contour of integration can be deformed so as to show that these black holes saddles contribute with non-zero weight to the semiclassical limit, and that the same is then true of the remaining two integrals. 
    more » « less
  8. A bstract We revisit the stability of black hole saddles for the Euclidean path integral describing the canonical partition function Z ( β ) for gravity inside a spherical reflecting cavity. The boundary condition at the cavity wall couples the transverse-traceless (TT) and pure-trace modes that are traditionally used to describe fluctuations about Euclidean Schwarzschild black holes in infinite-volume asymptotically flat and asymototically AdS spacetimes. This coupling obstructs the familiar Gibbons-Hawking-Perry treatment of the conformal factor problem, as Wick rotation of the pure-trace modes would require that the TT modes be rotated as well. The coupling also leads to complex eigenvalues for the Lichnerowicz operator. We nevertheless find that the Lichnerowicz operator can be diagonalized in the space of coupled modes. This observation allows the eigenmodes to define a natural generalization of the pure-trace Wick-rotation recipe used in infinite volume, with the result that a mode with eigenvalue λ is stable when Re λ > 0. In any cavity, and with any cosmological constant Λ ≤ 0, we show this recipe to reproduce the expectation from black hole thermodynamics that large Euclidean black holes define stable saddles while the saddles defined by small Euclidean black holes are unstable. 
    more » « less
  9. null (Ed.)
    A bstract We reformulate recent insights into black hole information in a manner emphasizing operationally-defined notions of entropy, Lorentz-signature descriptions, and asymptotically flat spacetimes. With the help of replica wormholes, we find that experiments of asymptotic observers are consistent with black holes as unitary quantum systems, with density of states given by the Bekenstein-Hawking formula. However, this comes at the cost of superselection sectors associated with the state of baby universes. Spacetimes studied by Polchinski and Strominger in 1994 provide a simple illustration of the associated concepts and techniques, and we argue them to be a natural late-time extrapolation of replica wormholes. The work aims to be self-contained and, in particular, to be accessible to readers who have not yet mastered earlier formulations of the ideas above. 
    more » « less
  10. A bstract We continue the study of real-time replica wormholes initiated in [1]. Previously, we had discussed the general principles and had outlined a variational principle for obtaining stationary points of the real-time gravitational path integral. In the current work we present several explicit examples in low-dimensional gravitational theories where the dynamics is amenable to analytic computation. We demonstrate the computation of Rényi entropies in the cases of JT gravity and for holographic two-dimensional CFTs (using the dual gravitational dynamics). In particular, we explain how to obtain the large central charge result for subregions comprising of disjoint intervals directly from the real-time path integral. 
    more » « less